Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.360479

ABSTRACT

Dysfunctional immune response in the COVID-19 patients is a recurrent theme impacting symptoms and mortality, yet the detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 205 COVID-19 patients and controls to create a comprehensive immune landscape. Lymphopenia and active T and B cell responses were found to coexist and associated with age, sex and their interactions with COVID-19. Diverse epithelial and immune cell types were observed to be virus-positive and showed dramatic transcriptomic changes. Elevation of ANXA1 and S100A9 in virus-positive squamous epithelial cells may enable the initiation of neutrophil and macrophage responses via the ANXA1-FPR1 and S100A8/9-TLR4 axes. Systemic up-regulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis and designing effective therapeutic strategies for COVID-19.


Subject(s)
Carcinoma, Squamous Cell , COVID-19 , Lymphopenia
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.361261

ABSTRACT

The recent COVID-19 pandemic has brought about a surge of crowd-sourced initiatives aimed at simulating the proteins of the SARS-CoV-2 virus. A bottleneck currently exists in translating these simulations into tangible predictions that can be leveraged for pharmacological studies. Here we report on extensive electrostatic calculations done on an exascale simulation of the opening of the SARS-CoV-2 spike protein, performed by the Folding@home initiative. We compute the electric potential as the solution of the non-linear Poisson-Boltzmann equation using a parallel sharp numerical solver. The inherent multiple length scales present in the geometry and solution are reproduced using highly adaptive Octree grids. We analyze our results focusing on the electro-geometric properties of the receptor-binding domain and its vicinity. This work paves the way for a new class of hybrid computational and data-enabled approaches, where molecular dynamics simulations are combined with continuum modeling to produce high-fidelity computational measurements serving as a basis for protein bio-mechanism investigations.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.10.244350

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we demonstrated that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids. Ciliated cells, alveolar type 2 (AT2) cells and rare club cells were virus target cells. Electron microscopy captured typical replication, assembly and release ultrastructures and revealed the presence of viruses within lamellar bodies in AT2 cells. Virus infection induced more severe cell death in alveolar organoids than in airway organoids. Additionally, RNA-seq revealed early cell response to SARS-CoV-2 infection and an unexpected downregulation of ACE2 mRNA. Further, compared to the transmembrane protease, serine 2 (TMPRSS2) inhibitor camostat, the nucleotide analog prodrug Remdesivir potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model for SARS-CoV-2 infection and drug discovery.


Subject(s)
Lung Diseases , Adenocarcinoma, Bronchiolo-Alveolar , Severe Acute Respiratory Syndrome , Tumor Virus Infections , Neoplasms , COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.23.20100024

ABSTRACT

The vastly spreading COVID-19 pneumonia is caused by SARS-CoV-2. Lymphopenia and cytokine levels are tightly associated with disease severity. However, virus-induced immune dysregulation at cellular and molecular levels remains largely undefined. Here, the leukocytes in the pleural effusion, sputum, and peripheral blood biopsies from severe and mild patients were analyzed at single-cell resolution. Drastic T cell hyperactivation accompanying elevated T cell exhaustion was observed, predominantly in pleural effusion. The mechanistic investigation identified a group of CD14+ monocytes and macrophages highly expressing CD163 and MRC1 in the biopsies from severe patients, suggesting M2 macrophage polarization. These M2-like cells exhibited up-regulated IL10, CCL18, APOE, CSF1 (M-CSF), and CCL2 signaling pathways. Further, SARS-CoV-2-specific T cells were observed in pleural effusion earlier than in peripheral blood. Together, our results suggest that severe SARS-CoV-2 infection causes immune dysregulation by inducing M2 polarization and subsequent T cell exhaustion. This study improves our understanding of COVID-19 pathogenesis.


Subject(s)
Lymphoma, T-Cell , Pleural Effusion , Pneumonia , Chronobiology Disorders , COVID-19 , Lymphopenia
SELECTION OF CITATIONS
SEARCH DETAIL